فهرست مطالب

Iranian Biomedical Journal - Volume:25 Issue: 1, Jan 2021

Iranian Biomedical Journal
Volume:25 Issue: 1, Jan 2021

  • تاریخ انتشار: 1399/09/12
  • تعداد عناوین: 8
|
  • Raheleh Moradpoor, Mona Salimi* Pages 1-7

    Herein, we review the current findings of how a variety of accessory cells could participate in shaping the tumor microenvironment and supporting the mechanisms by which cancer cells undertake the epithelial-mesenchymal transition (EMT). EMT, a complex of phenotypic changes, promotes cancer cell invasion and creates resistance to chemotherapies. Among the accessory cells present in the EMT, immune cells (both native and adaptive) can reciprocally influence the tumor cells features, promote EMT and negatively regulate the anticancer immune response. In this review, we look over the role of EMT in crosstalk between tumor cells and the immune system, with specific emphasis on breast tumors. Finally, we suggest that understanding the role of immune cells in cancer progression could create new opportunities for diagnostic and therapeutic interventions in cancer combination therapy.

    Keywords: Chemokines, Cytokines, Epithelial-mesenchymal transition, Tumor microenvironment
  • Fahimeh Hajipour, Sedigheh Asad, MohammadAli Amoozegar, AliAsghar Javidparvar, Jialun Tang, Haizheng Zhong, Khosro Khajeh* Pages 8-20
    Background

    Azo dyes are the most widely used synthetic colorants in the textile, food, pharmaceutical, cosmetic, and other industries, accounting for nearly 70% of all dyestuffs consumed. Recently, much research attention has been paid to efficient monitoring of these hazardous chemicals and their related metabolites because of their potentially harmful effect on environmental issues. In contrast to the complex and expensive instrumental procedures, the detection system based on the quantum dots (QDs) with the superior optochemical properties provides a new era in the pollution sensing and prevention.

    Methods

    We have developed a QD-enzyme hybrid system to probe methyl red (MR) in aqueous solutions using a fluorescence quenching procedure.

    Results

    The azoreductase enzyme catalyzed the reduction of azo group in MR, which can efficiently decrease the Förster resonance energy transfer between the QDs and MR molecules. The correlation between the QDs photoluminescence recovery and MR enzymatic decolorization at the neutral phosphate buffer permitted the creation of a fluorescence quenching-based sensor. The synthesized biosensor can be used for the accurate detection of MR in a linear calibration over MR concentrations of 5-84 μM, with the limit of detection of 0.5 μM in response time of three minutes.

    Conclusion

    Our findings revealed that this fluorometric sensor has the potential to be successfully applied for monitoring a wide linear range of MR concentration with the relative standard deviation of 4% rather than the other method.

    Keywords: Azoreductase, Methyl red, Quantum dots
  • Moslem Afsharnezhad, S. Shirin Shahangian*, Behnam Rasti, Mohammad Faezi Ghasemi Pages 21-32
    Background

    This study was devoted to assessing the inhibitory potential of acetone, methanol, and ethanol extracts of Acroptilon repens against disease-associated enzymes, as well as their antioxidant/antibacterial activity and phytochemical composition.

    Methods

    Comparative assessment using various antioxidant evaluation methods, including ferric reducing antioxidant power, scavenging ability on 2,2-diphenyl-1-picrylhydrazyl radical and hydrogen peroxide, and reducing power, indicated that the acetone extract presented the highest antioxidant activity, due to its highest total antioxidant content.

    Results

    The total phenolic content and total flavonoids content of these extracts were 3.44 ± 0.32 mg GAE/g DW and 2.09 ± 0.2 mg QE/g DW, respectively. The hydrodistillation essential oil from A. repens was analyzed by gas chromatography-mass spectroscopy, and 17 compounds were identified. All extracts showed good inhibitory activities against disease-related enzyme acetylcholinesterase and α-amylase, with the lowest IC50 for acetonic extract. Extracts of A. repens exhibited inhibiting activities against the Gram-positive bacteria, with the most effect of acetone extract.

    Conclusion

    Our findings suggest A. repens as a promising source of natural antioxidant, antimicrobial, anti-cholinesterase and anti-amylase agents for the management of oxidative damage, and pharmaceutical, food, and cosmeceutical purposes.

    Keywords: Acroptilon repens, Antioxidants, Phytochemicals
  • Hossein Forghani, Mahin Jamshidi Makiani, Hossein Zarei Jaliani*, Mina Boustanshenas, Seyed Mohsen Zahraei Pages 33-40
    Background

    Some resources have suggested that genetically inactivated pertussis toxoid (PTs) bear a more protective effect than chemically inactivated products. This study aimed to produce new version of PT, by cloning an inactive pertussis toxin S1 subunit (PTS1) in a fusion form with N-terminal half of the listeriolysin O (LLO) pore-forming toxin.

    Methods

    Deposited pdb structure file of the PT was used to model an extra disulfide bond. Codon-optimized ORF of the PTS1 was used to make recombinant constructs of PTS1 and LLO-PTS1 in the pPSG-IBA35 vector. The recombinant PTS1 and LLO-PTS1 proteins were expressed in BL21 DE3 and SHuffle T7 strains of E. coli and purified by affinity chromatography. Cytotoxic effects of the recombinant proteins were examined in the MCF-7 cell line.

    Results

    The purity of the products proved to be more than 85%, and the efficiency of the disulfide bond formation in SHuffle T7 strain was higher than BL21 DE3 strain. No cytotoxicity of the recombinant proteins was observed in MCF-7 cells. Soluble recombinant PTS1 and LLO-PTS1 proteins were produced in SHuffle T7 strain of E. coli with high efficiency of disulfide bonds formation.

    Conclusion

    The LLO-PTS1 with corrected disulfide bonds was successfully expressed in E. coli SHuffle T7 strain. Due to the safety for human cells, this chimeric molecule can be an option to prevent pertussis disease if its immunostimulatory effects would be confirmed in the future.

    Keywords: Adjuvant, Cloning, Fusion protein, Pertussis toxin
  • Saied Mostaan, Abbas Ghasemzadeh, Parastoo Ehsani, Soroush Sardari, MohammadAli Shokrgozar, Mohsen Abolhassani*, Gholamreza Nikbakht Brujeni Pages 41-46
    Background

    Pasteurella multocida is a Gram-negative, non-motile, non-spore forming, and aerobic/anaerobic cocobacillus known as the causative agent of human and animal diseases. Humans can often be affected by cat scratch or bite, which may lead to soft tissue infections and in rare cases to bacteremia and septicemia. Commercial vaccines against this agent include inactivated, live attenuated, and non-pathogenic bacteria. Current vaccines have certain disadvantages such as reactogenicity or reversion to virulence. Therefore, the aim of this study was to reach a multi-epitope vaccine candidate that could be serotype independent and covers most incident serotypes of P. multocida.

    Methods

    In this study, reverse vaccinology strategy was used to identify potentially immunogenic and protective epitopes. First, multiple alignments of different sequences of Pasteurella lipoprotein E (PlpE) from various serotypes of P. multocida were analyzed to identify the conserved regions. Bioinformatics tools were then applied to predict and select epitopes for further studies.

    Results

    Three different conserved immunogenic regions were selected according to the selected criteria, and their various sequential orders were evaluated structurally by in silico tools to find the best order.

    Conclusion

    In searching the epitopes of PlpE to design a new vaccine candidate against pasteurellosis, we found the region 1 + region 2 + region 3 (without any linker between regions) of epitope, including the regions of PlpE protein of P. multocida, as the appropriate serotype independent vaccine candidate against pasteurellosis.

    Keywords: Pasteurella multocida, Polytope, Vaccines
  • Kanika Miglani, Sunil Kumar, Anita Yadav, Neeraj Aggarwal, Ranjan Gupta* Pages 47-53
    Background

    Single nucleotide polymorphisms in 8-oxoguanine DNA glycosylase-1 (OGG1) gene modulates DNA repair capacity and functions as one of the first lines of protective mechanisms against 8-hydroxy-2’-deoxyguanosine (8-OHdG) mutagenicity. OGG1-Cys326 gene polymorphism may decrease DNA repair function, causing oxidative stress due to higher oxidative DNA damage. The main purpose of this study was to examine the link of oxidative and genotoxic DNA damage with DNA repair OGG1 gene polymorphism, in charcoal workers exposed to polyaromatic hydrocarbons.

    Methods

    Urinary 8-OHdG excretion (a biomarker of oxidative DNA damage) was determined in both exposed and control populations. Genotyping of OGG1 DNA repair gene in the blood samples of subjects was carried out by PCR-RFLP method.

    Results

    The 8-OHdG urinary concentration was significantly higher (p < 0.05) in the exposed (geometric mean 12.33 ± 3.78) than in the unexposed (geometric mean 7.36 ± 2.29) population. DNA damage, as measured by 8-OHdG and tail moment content, was found to be significantly higher in OGG1 homozygous mutants (mt/mt; 18.81 ± 3.34; 6.04 ± 0.52) as compared to wild-type genotypes (wt/wt; 10.34 ± 2.25; 5.19 ± 2.50) and heterozygous (wt/mt) mutants (12.82 ± 2.81; 6.04 ± 0.93) in the exposed group.

    Conclusion

    We found a significant association of OGG1 heterozygous (wt/mt) and homozygous (mt/mt) variants with oxidative and genotoxic damage, suggesting that these polymorphisms may modulate the effects of polycyclic aromatic hydrocarbons exposure in occupational workers.

    Keywords: 8-hydroxy-2’-deoxyguanosine, 1-hydroxypyrene, Polycyclic aromatic hydrocarbons
  • Fatemeh Mohammadi, Mohammad Shafiei, Dlnya Assad, Golale Rostami*, Mohammad Hamid, Ali Mohammad Foroughmand Pages 54-61
    Background

    Imatinib mesylate (IM), a strong and selective tyrosine kinase inhibitor, has been approved as the front line of treatment in chronic myeloid leukemia (CML) patients. In spite of satisfactory results of imatinib in the treatment of patients with CML, patients with treatment failure or suboptimal response developed resistance that might be because of pharmacogenetic variants. This study attempted to evaluate the influence of ABCB1 gene polymorphisms and smoking on CML risk and resistance to imatinib.

    Methods

    ABCB1 (c.1236C>T, c.3435C>T) polymorphisms were genotyped in 98 CML patients and 100 sex- and age-matched healthy subjects by PCR-RFLP method, followed by sequencing. The patients were evaluated for cytogenetic response by the standard chromosome banding analysis in regular intervals.

    Results

    Our results showed that c.1236CC genotype was significantly associated with imatinib resistance (OR = 3.94; p = 0.038). Analysis of the joint of single nucleotide polymorphism -smoking combination showed that smokers with c.1236TT/CT and c.1236CC genotypes had the increased risk of CML (OR = 6.04; p = 0.00 and OR = 4.95, p = 0.005) and treatment failure (OR = 5.36, p = 0.001 and OR = 15.7, p = 0.002), respectively. Smokers with c.3435TT/CT and c.3435CC genotypes also displayed the elevated risk of CML development (OR = 6.01, p = 0 and OR = 4.36, p = 0.011) and IM resistance (OR = 5.61, p = 0.001 and OR = 13.58, p = 0.002), respectively.

    Conclusion

    Our findings suggest that c.1236CC genotype has clinical importance in the prediction of treatment outcome with IM, and smoking could have a synergistic role in CML risk and IM resistance.

    Keywords: ATP binding cassette transporter subfamily B, Imatinib mesylate, Smoking
  • Zohreh Hojati*, Farzaneh Omidi, Moein Dehbashi, Bahram Mohammad Soltani Pages 62-67
    Background

    Among different roles of miRNAs in AD pathogenesis, hsa-miR-494-3p and hsa-miR-661 functions are poorly understood.

    Methods

    To obtain the gene targets, gene networks, gene ontology, and enrichment analysis of the two miRNAs, some web servers were utilized. Furthermore, the expressions of these miRNAs were analyzed by qRT-PCR in 36 blood sera, including 18 Alzheimer’s patients and 18 healthy individuals.

    Results

    The in silico analysis demonstrated the highlighted roles of metabolic and cellular response to stress pathways engaged in circulating hsa-miR-494-3p and hsa-miR-661 in AD. The qRT-PCR analysis showed that the downregulated expression level of hsa-miR-661 was statistically significant (p < 0.05). Also, the ROC curve of hsa-miR-661 displayed the significant AUC (p = 0.01).

    Conclusion

    Based on our findings, the metabolic and cellular responses to stress pathways are closely connected to these two miRNAs functions. Besides, the qRT-PCR and Roc curve determined hsa-miR-661 could be as a biomarker for diagnosis or prognosis of AD patients.

    Keywords: Alzheimer’s disease, Serum, Circulating microRNAs